

A new measurement of the EDM of 129-Xe

26th May 2009 Florian Kuchler

The Electric Dipole Moment

Electric Dipole Moment (EDM) of a charge distribution:

$$\mathbf{d} = \int \mathbf{r} \rho(\mathbf{r}) d\mathbf{r}$$

dipole moment **d** directed along spin **s**

spin: axial vector

dipole moment: polar vector

Non-zero EDM: CP and T violation

Time-reversal violation

Parity violation, hence CP violation

Motivation of EDM measurements

additional CP violation required to explain baryon asymmetry in the Universe (Sakharov conditions, 1967)

predictions from Standard Model (SM) extensions

close to current experimental limits

new physics beyond SM

EDM of diamagnetic atoms

EDM of neutral atom?

- electron-shell screens nucleon dipole moment
- Schiff moment ~ Z² Schiff, Phys. Rev., **132**, 2194 (1963)

199 Mercury

measured:

$$d_{199Ha} < 3.1 \times 10^{-29} \text{ ecm}$$

Griffith, PRL 102, 101601 (2009)

129Xenon

measured:

$$d_{129Xe} < 7 \times 10^{-27} ecm$$

Rosenberry, Phys. Rev. Lett.

86, 22 (2001)

predicted (SM):

$$d_{129Xe} \sim 1 \times 10^{-33} - 5 \times 10^{-34} ecm$$

Sushkov, JETP, 60, 873 (1984)

Idea of Xe-EDM measurement

Spin polarized sample in B_0 field

Ramsey's method:

$$E \mid\mid B_0 \longrightarrow \hbar \omega_L = \mu B + dE$$

change in Larmor precession frequency

Our approach:

rotating E-field with constant phase φ to P

 \longrightarrow precession $\omega_d \perp \omega_L$ with $\omega_d = \frac{dE}{\hbar}$

Microfabricated Xe-EDM chip

Micro-fabricated structure with (many) polarized liquid 129Xe droplets

- high density
- many individual experiments in parallel
- transverse relaxation time T₂ > 1300s
 Romalis, Phys. Rev. Lett., 87, 6, (2001)

- → array of eg. 5 or 9 droplets → proof of principle with 3
- rotating E-field, but Ramsey's method (E || B) still possible

Measurement method

$$P \perp E^+$$

 $(\phi = \pi/2)$

experiment 1

PIIE

 $(\phi = 0)$

reference

 $\mathsf{P} \perp \mathsf{E}$

 $(\varphi = -\pi/2)$

experiment 2

Measured signal

Accumulated phase:

(example: $d\sim3x10^{-29}$ ecm, $E\sim10^5$ V/cm, t=1000 s)

$$\theta_d^{\text{exp1}} = -\theta_d^{\text{exp2}} = \frac{\omega_d \tau}{2\pi} = \frac{dE\tau}{2\pi\hbar} \approx 10^{-6}$$

Analysis:

 $\pi/2$ spin-flip \longrightarrow precession around B₀

expected magnetic induction:

@ 1 mm distance ~ 150 fT

 \longrightarrow phase-shift of π between E⁺ and E⁻

Realization

SQUID current sensors

Pick-up coil

gradiometer coil

Nb wire (50µm) on 2mm sapphire rod

SQUIDs measure **current** through superconducting Nb wire

noise level @ PTB Berlin of < 2 fT / sqrt(Hz) (between 15-100 Hz)

sensitivity goal of d=10⁻³⁰ ecm in one measurement

26th May 2009 Florian Kuchler

Status of the Setup

LMU Excellence Cluster Universe

5 layer µ-metal shield

shielding factor >200/layer

B₀ current source

10⁻⁸ current stability over 100s

SQUID current sensors

Systematic effects

Magnetic field

requirements less stringent (gradients, stability)

$$\omega_d \perp \omega_L$$

Systematic effects:

motional fields

$$B_m = \frac{1}{c^2}v \times E$$

- AC currents
- circling currents
- E-field alignment
- cross-talk btw. droplets
- droplet geometry
- liquid specific issues
- no geometric phases

Sum of systematic effects < 10⁻³¹ ecm per measurement

Conclusion and Outlook

Summary

- new approach with different systematics
- simultaneous experiments incl. reference sample
- sensitivity goal of 10⁻³⁰ ecm per measurement
- \longrightarrow 10000 measurements \longrightarrow ultimate sensitivity of 10⁻³² ecm

Goals for 2009

- produce liquid polarized xenon
- operate SQUIDs at design noise-level

xenon NMR signal

Polarized Xenon

+ ⁴He gas for pressure broadening

Polarize Rb by optical pumping:

$$S_{1/2,-1/2} \rightarrow P_{1/2,1/2} \rightarrow populating S_{1/2,1/2}$$

Rb – Xe spin-exchange collisions

- e⁻-spin to nuclear spin polarization
- macroscopic polarisation P

magnetic dipole

