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New challenge: the ESS

T.Grosz, F.Mezei, L.Rosta
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Neutron research in Europe:
~4000 scientists, 11 facilities (and decreasing):  ~ 330 M€/a
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- ESFRI 2006 road map:
need for “top tier” neutron 
source for Europe
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Energy efficiency is key for high intensity neutron beam 
production: fast neutrons produced / joule energy or heat

Fission reactors:       ~ 109 (in ~ 50 liter volume)

Spallation:       ~ 1010    (in ~ 2 liter volume)

Fusion: ~1.5x1010  (in ~ 2 liter volume)
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(but neutron slowing down efficiency reduced by ~20 times)

Photo neutrons: ~ 109 (in ~ 0.01 liter volume)

Nuclear reaction (p, Be): ~ 108 (in ~ 0.001 liter volume)

Laser induced fusion: ~ 104 (in ~ 10-9 liter volume)

Spallation: most favourable for the foreseeable future



Pulsed source provides for more efficient use of the 
neutrons produced:

by the use of time-of-flight (TOF) methods:
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E.g. powder diffraction (idea by Buras, ~1960)
Potential efficiency gain: switch off 
source between chopper pulses



Pulsed source provides for more efficient use of the 
neutrons produced:

by the use of time-of-flight (TOF) methods

Total gain potential in efficiency:
x 6 energy of neutron production
x 10 – 100 by TOF on pulsed sources
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x 10 – 100 by TOF on pulsed sources 

 Quantum leap in performance:

5 MW ESS: start with as many neutrons as e.g. ILL:
the FIRST CHALLENGE of the NEXT GENERATION



Progress in neutron sources
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Development of neutron sources

 Parasitic use of energy research reactors (1949…)
 Dedicated neutron beam reactors (1958,…. )
 ILL (1972): limit of power at reasonable costs
 Pulsed sources (1960’s, Dubna):

more efficient use of fewer neutrons produced
 Spallation sources (1970’s,…)
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less heat / energy per neutron produced
 MW class pulsed spallation sources (SNS, J-PARC) 

Leap in source performance to surpass ILL:
fewer neutrons more efficiently produced and used

 SNS & J-PARC: reach limits of traditional pulsed 
spallation source technology: 
shock waves in target, 
space charge in accelerator ring,….



“Short” proton pulses using accelerating (or storage) rings:

 ~ 1 s pulse length, huge instantaneous heat deposition 
(~ 15 GW for 23 kj/pulse of SNS) 

~ 15 x
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 Proton pulse length poorly matches the 10 – 300 s neutron 
moderator response time

 Pulse lengths < 4 ms meets resolution requirements in some 
key applications (e.g. SANS, NSE)



SNS (Oak Ridge, USA):
successfully  achieved 0.5 MW power !! (goal 1.4 MW)
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“Long” proton pulses using linear accelerators:
 Linear accelerators can produce the same beam energy 
per pulse in ~ 100 s pulses at much reduced costs
~ 60 % of accelerator parts and complexity removed

simplified SNS
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“Politics is the art of the possible”
Technology



“Long” proton pulses using linear accelerators:

 Longer - hence more intense - pulses (ms) are advantageous for
cold and thermal neutron applications: > 1014 n/cm2/pulse 
(compared to < 1013 for SNS) at instantaneous power of ~ 90 MW

1.5 x 
SNS
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 Total energy per pulse of a few hundred kJ is household 
experience (ESS: 300 kJ/pulse) 

LP target operation:  
to 98 % in thermohydraulic equilibrium 
(vs. 100 % non-equilibrium for short pulses)



6.0x1015

 Optimized LPSS 7.5 MW
SNS thermal moderators = 1 ЕЕ

]

14  = 6 Е
 optimized LPSS 7.5 MW
SNS cold moderatorsЕ

]

“Long” proton pulses using linear accelerators:

 Longer - hence more intense - pulses (ms) also provide higher
peak flux at comparable costs and technical complexity

Example (> ESS reference power): 
450 kj/pulse long pulses (350 MW inst.) vs 23 kj/pulse short pulse (15 GW inst.: SNS)
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Fully new perspectives!



Huge gain in useful neutron intensity
Example: reflectometer (~15 m) 

 ~ 5 % at 4 Å
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Choppers:   7500 RPM
Beam width: 50 mm

2 – 5 Å wavel. band
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]

Choppers:  15000 RPM
Beam width: 25 mm

New capability: very 
high resolution

Huge gain in useful neutron intensity
Example: reflectometer (~15 m) 

 ~ 5 % at 4 Å
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More efficient option 
with identical result:
-extend pulse length

-extend instr. Length

-reduce pulse rate

 ESS: 16.67 Hz



Source figure-of-merit (F):
peak brilliance, if the well shaped pulses are long enough 
to avoid excessive resolution
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J PARC ~ SNS
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J-PARC ~ SNS
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Source figure-of-merit (F): time average flux, if only one point in 
(Q, ) space is of interest (e.g. polarization analysis in single 
crystals, CRYOPAD,…)
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Hot neutrons ( < 
0.7 Å): relatively 
small chapter of 
neutron research, 
well served by 
existing reactors 
with hot source 
and SP sources



Short pulse source: optimized for hot neutrons
Long pulse source: optimized for cold neutrons

Conservative, well established technologies, 
Innovative use,
Reduced complexity

 Leap in cold neutron performance at very favorable costs

ESS (5 MW LP):
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 Construction costs comparable to SNS and J-PARC
 Operational costs comparable to ILL  (36 MW vs. 70 MW!)
 Many beam lines possible with long guides (similar to 
continuous sources)
 High power consumption efficiency of linear accelerators
 No alternative technology in sight to be available within decades
 A new approach with large long term development potentials

and perspectives:  30 MW? 100 MW?



Longer term perspectives:
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2019

2030?
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Technical basis

 ESS reference design 2003 for LP target station
- fully validated by SNS experience (incl. each component)
- no major innovation proposed since
- no substantially different new approach in sight

 Optimization of reference design: major effort > 30 M€ to 
consider all aspects and complexity (e.g. change of final 
proton energy  changes in proton current, radiation 
damage, target vessel life time, …)
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damage, target vessel life time, …)
 From reference design to optimized engineering design:

collective effort by Pan-European ESS team and 
collaboration partners; subject to international review 
and common decision making process by ESS partners

 Accumulated new experience will need careful analysis in the 
framework of optimization effort (E.g. at SNS 
some built in linac features – couplers, piezo cavity 
compensation – are not used. Can they be left out?)



Main technical issues for engineering design

 Linac frequency, accelerating gradient, possible design 
simplifications, final energy, upgradeability

 Choice of target, incl. upgradeability: mercury? Liquid lead or 
lead-bismuth? Rotating solid target wheel? (some R&D) 
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 If other than mercury proves to be favored, substantial 
R&D need will occur (cf. SNS switch to superconducting 
linac)



Instrumentation 
 Catalyze global development in collaboration with leading 

sources and teams. 
ILL, ISIS, SNS, J-PARC, FRM-II, PNPI, JINR, …

 Select best state-of-the-art technology in view of the latest 
i tifi d l t ibl f 2013
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scientific needs… as late as possible: from ~ 2013



UCN factory at ESS
opportunity 3 - 4 orders of magnitude higher UCN densities 

Separate spallation target with solid cold 
source (D2 or CD4)  A.Serebrov

Shutter operation adapted to pulse structure 
H.Rauch
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Maximum gain at low repetition rates 
ESS: 16.67 Hz Yu. Pokotilovski 
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Summary of conditions / advantages

 ESS: Pan-European project, Pan-European control, best 
possible Pan-European team

 Debrecen offers outstanding, dynamically developing 
academic, research, cultural, industrial, workforce,
educational and quality of life environment.

 Rich Hungarian tradition in neutron science: BNC active 
user facility, Hungarian discoveries (Neutron 
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Spin Echo, Supermirrors, Neutron holography, Long 
pulse neutron sources....) 

Well established and continuing tradition in nuclear 
industry, nuclear safety and regulatory environment

 Good geographical and geological conditions
(site preparation similar to SNS)



CITY OF DEBRECEN 
•The second largest city in 
Hungary in a region 
dynamically developing, main 
beneficiary of EU stuctural 
funds.

•Access: airport motorway

Site selection
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Access: airport, motorway, 
train

•Scientific centre: University 
(30000 students), ATOMKI, 
high added value indutry 

•Rich cultural life and a 
wealth of hospitality
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ESS in Hungary:  
(would be) the best choice for Europe

Thank you for attantion!


