

Australian Government

Australian Nuclear Science & Technology Organisation

OPAL : Cold Neutron Source Commissioning, Operation and Heat Load

Ginsto

Outline

- 1. The OPAL Reactor and its Utilisation
- 2. CNS Systems.
- 3. Installation and Commissioning 2005-07.
- 4. Operational Issues.
- 5. Heat Load Measurement.

OPAL Reactor

- 20 MW thermal open pool reactor
- Light water cooled and moderated
- Plate type compact LEU fuel
- Heavy water reflected
- Utilisation:
 - Radiopharmaceutical production
 - Beam research
 - Silicon doping

OPAL Reactor

Reactor pool during initial water fill

Contractors

Cryo Refrigeration System

Vacuum & Moderator Systems

Ansto

INI/AP Ginsto

Reactor Recovery

Forced Evaporation – a transition from NO (cryogenic) mode to SO (warm) mode following system trip

Turbine Failure

- Turbine failure during transition from cryogenic conditions.
- Inferred cause air contamination in He.
- Air ingress traced to D2 instrumentation.
- Instrumentation modified.

Turbine Failure Investigation

- 2 further failures at bearings ('06)
- Oil separation efficiency improved
- REGEN not performed in July '07 due to other engineering tests.
- Routine sampling discovered in 500 ppm of N2.
- Such N2 identification not typically possible (continuous cold operation).

What we knew

- Plant entirely pressurised
- Some leaks (outgoing) have been found ~ 150 L/day
- Helium dew point on the high side
- N2 contamination not high enough to cause turbine failure(?)

Investigation

- Air in-leak verified to be CONTINUOUS
- Air in-leak rate measured at ~ max. 0.5 L/day under different operating conditions, e.g. flow rates, compressor status, pressure setpoints...
- Oxygen/nitrogen ratio variable (analytical error).
- Large in-leaks previously responsible for turbine damage masked the current problem

Turbine Failure Investigation

Turbine Failure Investigation

CNS-RCS Operating Mode	In-Leakage (ppm /day)
Comp A, 30 Hz	3.5
Comp A, 30 Hz, 1.5 bar	5.6
Comp A, 50 Hz	8.3
Comp B, 50 Hz	12
Comp B, 50 Hz, 1.4 bar	12
NO mode	13
Comp A, with CO ₂ injection into shaft seal, ~ 10 ml/min	No change
Comp A, with He injection into shaft seal, ~ 10 ml/min	No change
Comp A, with He injection into shaft seal, ~ 100 ml/min	No change (TBC)

Turbine Failure Investigation

Background: 1*10⁻⁸ mbar.I.s

Ansto

Position	Description	Leak Rate (mbar.l.s)
A, B, C, D	Seal Rings (general area, bagged)	8*10 ⁻³
E, F	Shaft (general area, bagged)	6*10 ⁻³
G	Inlet Valve (general area, bagged)	1.4*10 ^{*†}
н	Helium Outlet Flange	1*10 ⁻⁸
1	Oil Inlet Flange	1×10 ⁻⁸
J	HP Flange	2*10*'
С	Seal Ring, inner (upper section)	1*10 ⁻³ , 5.5*10 ⁻⁵
A	Seal Ring, outer (upper section)	3*10 ⁻⁵
D	Seal Ring, inner (lower section)	1*10 ⁻⁵
В	Seal Ring, outer (lower section)	1×10 ⁻⁸
К	Compressor Head Flange	2*10*/
L	Inlet Valve Flange	3*10*′

Turbine Failure Investigation

- To pin-point leak mechanism
 - Vacuum test Tracer gases
 - Leak tests

- Blanketing gases

Run 16 - N2 Contamination Build-up - NO mode, Comp A (50Hz) (16/2 - 17/2 - 2-3000 ml/min He injection comp A, 2-3000ml/min Ar comp B, P_shaft is ~100mmH₂O; 18/2 - 19/2 6-7000ml/min for both He and Ar, P_shaft >150mmH20; 19/2 - 22/2 - no blanket)

Turbine Failure Investigation

 NMR analysis of oil – doublet absent (implying oxidation)

Turbine Failure Investigation

 Compressor oil oxidation (acetaldehyde CH3CHO) verified by FT-IR – cause of 2 turbine damages in 2006

Turbine Failure Investigation

CNS In-pile

Moderator and Displacer	AIMg5	3741 gram
Moderator	D2	19.62 litre
Nominal D2 Temperature		25 K
Nominal D2 Pressure		330 kPa a

Displacer (2.98 I)

Moderator Chamber

Heat Load

Measured Heat Load on the CNS In-pile by Cryogenic Helium Thermal Balance Linear fits indicate nuclear heat load (W/MW) by the slope and non-nuclear heat load by the offset (W)

Heat Load

Element	Heat Load		
	Total (D2 Liq. 20K)	Total (D2 Vap. 35K)	D2 only
Design conservative heat load (W)	(178.7) 293.1		
Non-nuclear Heat Load (W)	388	363	25 (6%)
Nuclear Heat Load (W/MW)	180.5	85.7	94.8 (53%)

0.023 W/MW/g - for AIMg5 heat load 0.030 W/MW/g - for D2 heat load

Heat Load

	Size	Design Heat load (2002)		Measured (2008)
		BOC	EOC	
Liquid D ₂	19.6 I	1397	1376	1921
D ₂ Cell	1533 g		998	
Displacer	600 g		391	
Jacket	1537 g		995	
Metal		2337	2300	2076
Thermal rad.		350	350	388
Total (less isotope source)		4084 W	4026 W	4385 W (7%)

Moderator Temperature

Ansto

D2 reservior pressure consumed by LD2

Ansto

(He @ 24K, Reactor 1MW, 570 W heating)

ansto

Cold Beams

Heat Load	Contract Requirement	Operation
CG 3 Flux at reactor face	1.4 E10 n/cm2/s	1.8 E10 n/cm2/s
CG 4 Flux at reactor face	1.4 E10 n/cm2/s	2.49 E10 n/cm2/s
CG 3 Spectrum peak	< 4.2 meV	3.05 meV
CG 4 Spectrum peak	< 4.2 meV	2.35 meV

Total counts and long wavelengths drop substantially above 21.5 K

24

CNS Characteristics

Parameter	Value
Reactor power	20 MW
Moderator type	Liquid Deuterium
Moderator volume	20 litres
Moderator Temperature	~ 23 K
Moderator	By natural circulation in a sub-
circulation / cooling	cooled Deuterium Thermosiphon,
	He cooled.
Nominal heat removal capacity	5000 W
Average Cold Neutron Flux in Cell	7.3 10 ¹³ · cm ⁻² ·sec ⁻¹
Cold Neutron Flux at Reactor Face	1.4 10 ¹⁰ cm ⁻² ·sec ⁻¹
Moderator Cell material	AIMg5 Alloy
VC material	Zr-Nb Alloy
VC design pressure	1.6 MPa
Commissioning	Year 2005

CNS Description

1. In-pile Components (also combining a reflector plug) Vacuum containment: Zircadyne (ZrNb2.5%) Moderator chamber: Aluminium (AIMg5) Sub-contracted: PNPI 2. Cryogenic Refrigeration System He circuit, Brayton cycle, 19.8K at 5000W Sub-contracted: Air Liquide 3. Moderator System Liquid deuterium, ~ 24K, 20 m³, passive 4. Vacuum System 2 off (redundancy) 5. Gas Blanketing System He / N₂

Heat Load

	Size	Design Heat load (2001)	Measured (2008)
Liquid D ₂	19.6 l	1357 W	1921 W
D ₂ Cell	1533 g	998 W	
Displacer	600 g	391 W	
Jacket	1537 g	995 W	
Metal		2384 W	2076 W
Total		3741 W	3997

CNS In-Pile Characteristics

Parameter	Nominal Value
Heat load on the Moderator Chamber	4300 W
D2 pressure	330 kPa
He T to the Chamber	19 K
He T to the HX	19 K
Total cooling He flow rate	160 g/s
He pressure after the TS	150 kPa
Vacuum around the Thermosiphon	1.3·10 ⁻² Pa

Heat Load

LD2 Heat Load

Heat Load

D2 reservior pressure consumed by LD2

- 3 moderator chamber,
- 4 tube-in-tube parallel flow heat exchanger as an upwards tube.

Ansto

In-pile Prototype Testing (PNPI)

AIM: To prove heat removal by thermosiphon

PROTOTYPE: Moderator chamber and thermosiphon. Two electric heaters modelled nuclear heating.

RESULTS:

Ansto

Operation in normal cryogenic mode with 4300 W heat input.

Operation in warm stand-by mode with 2650 W heat input.

RCS Factory Acceptance Test (Air Liquid)

Ansto

RCS Factory Acceptance Test (Air Liquide)

TEST PROGRAM – Jan 2004

CONCLUSIONS

- 5.6 kW heat removal capacity.
- Stand-by operation, and transition between modes successful.

LESSONS LEARNT

- The cryogenic helium bypass loop
- Helium relief tank
- Helium contamination

Cold Commissioning

Transition from SO (warm) mode to NO (cryogenic) mode with simulated power

Turbine Failure Investigation

• Compressor shaft seal modified

Thermosiphon Temperature

Heat Load	Prototype tests	Operation
D2	2170 W	1921 W
Vessel	2648W	2076 W

ansto

OPAL Reactor Facility

ansto

Operation

Normal Operating Mode (NO) Stand-by Operating Mode (SO) Halt Mode

Fast Warm-up – rapid deuterium vapour warmup

Forced Evaporation – accelerated return to reactor power (reactor poison–out)

Helium injection into the vacuum containment