Yu.Sobolev

Search for spin-dependent short range interaction of the bound neutron in ³He/¹²⁹Xe clock comparison experiments

Institut für Physik, Universität Mainz: C. Gemmel, W.Heil, S.Karpuk, K. Lenz, Yu. S, K.Thullney

Physikalisch-Technische-Bundesanstalt, Berlin: M. Burghoff, W. Kilian, S.Knappe-Grüneberg, W. Müller, A. Schnabel, F. Seifert, L. Trahms

7th international UCN workshop in St.Petersburg 2009

➤ motivation

- >description of experiment
- > measurement results
- conclusion and outlook

Motivation

• New development:

low-field magnetometer based on the detection of free spin-precession of gaseous, nuclear spin-polarized ³He or ¹²⁹Xe samples with a SQUID as magnetic flux detector.

• Unique parameters:

Very long relaxation of both gases ($T_{2,He} \sim 60h$, $T_{2,Xe} \sim 5h$) High obtainable nuclear polarization (initial $P_{He} \leq 80\%$, $P_{Xe} \leq 40\%$) - due to this high signal-to- noise ratio and long coherence time reachable in one measurement \rightarrow very high accuracy of measurement of precession frequency << nHz (CRLB ~ 1/T^{3/2}) [arXiv:0905.3677v1]

• Possibility to make ³He - ¹²⁹Xe co-magnetometer:

in this case in combination of weighted precession frequencies $\omega_{\text{He}} - \gamma_{\text{He}} / \gamma_{\text{Xe}} \omega_{\text{Xe}}$ fluctuations of ambient magnetic field compensated and it will be ideal for detection of non-magnetic spin-interaction.

Several experiments looked for exotic pseudo-scalar interaction*. Most strong constraints in range 1 – 1000 cm were obtained in experiment with Cs(Hg) magnetometer [A.N.Youdin et al., PRL 77 (1996) 2170].

Performance of our ³He – ¹²⁹Xe co-magnetometer exceed Cs(Hg) which enable us to search with higher sensitivity!

*[J.E. Moody and Frank Wilczek, Phys. Rev. D 30 (1984) 130]

BMSR 2, PTB Berlin

Lay-out of experimental setup

Lead glass samples

Power spectrum density of ³He-¹²⁹Xe co-precession differential signals between SQUIDs Z1C and Z9C.

Results of He/Xe co-magnetometry

Method for extraction of amplitude and phase of the signal

"Digital lockin" method:

• First, the measured SQUID signal s(t) is mixed numerically with a reference frequency ~ $<\omega_{He(Xe)}>$ according to $s(t) \cdot exp(-i <\omega_{He(Xe)}>t)$ and is then transformed into the frequency domain via direct Fourier transformation (FFT).

• After that, an exponential filter ~ $exp(-\omega^2/\omega_{cut}^2)$ is applied. Its cut-off frequency determines the bandwidth of our output data.

- The filtered data are then transformed back into the time domain using inverse FFT.
- The result is *F*_{He(Xe)}(t). The phase Φ_{He(Xe)}(t) is found as atan(Im[*F*_{He(Xe)}(t)]/Re[*F*_{He(Xe)}(t)]) and the amplitude is 2| *F*_{He(Xe)}(t)|.

Consecuently errors of phase fit should be scaled with factor: r = $\sqrt{(\sqrt{\pi} \cdot \text{sample_rate} / \omega_{cut})}$

Extracted signal amplitudes:

Results for transverse relaxation time:

Measurement: sample(s)	Mass sample(s) removal time / measurement time without sample (sec)	Gas mixture ³ He : ¹²⁹ Xe : N ₂ (mbar)	³ He / ¹²⁹ Xe initial amplitude (pT)	Relaxation time T* ₂ ³ He / ¹²⁹ Xe before // after sample (s) removal (hours)
Two samples	7200 / 10600	1 : 8.9 : 37	2.4 / 3.3	22.83 / 5.66 // 23.77 / 5.75
Right sample	10800 / 42700	2.3 : 9.6 : 36.1	10.7 / 5.6	17.87 / 4.70 // 18.26 / 4.76
Left sample	10800 / 25800	2.4 : 12 : 34.6	6.16 / 8.26	18.51 / 4.27 // 18.82 / 4.30

Extracted phases:

Results of measurement of change in the weighted precession frequencies difference caused by mass sample removal:

$\Rightarrow \delta_V = \frac{1}{2} (\Delta_V)$	$^{\prime}$ right sample - $~\Delta { m V}$ left sample	。) = -6.7 ± 5.0 nHz
Left sample	Δv = -74.2 ± 6.2 nHz	$\propto \Delta B$ = -2.29 ± 0.19 fT
Right sample	Δv = -60.8 ± 7.8 nHz	$\propto \Delta B = -1.88 \pm 0.24 \text{ fT}$
Two samples	$\Delta v = -7.8 \pm 11.5 \text{ nHz}$	$\propto \Delta B$ = -0.24 ± 0.35 fT

Results of measurement of change in the magnetic field (from He phase alone):

Two samples	Δv ≈ 6.4 ·10 ⁻⁵ Hz	∝ ΔB ≈ 2 pT
Right sample	$\Delta_{\rm V} \approx 7.6 \cdot 10^{-5} \text{ Hz}$	∝ ∆B ≈ 2.3 pT
Left sample	Δν ≈ -0.85 ·10 ⁻⁶ Hz	∝ ΔB ≈ - 0.4 pT

Limitation on short range spin-dependent interaction:

The effective PT violating potential of interaction between spin of one fermion with another fermion is given by

$$V_{SP}(\mathbf{r}) = \frac{\hbar^2 g_S g_P}{8\pi m} \left(\frac{\mathbf{r}}{r} \cdot \boldsymbol{\sigma}\right) \left(\frac{1}{r\lambda} + \frac{1}{r^2}\right) e^{-r/\lambda}$$

It follows that in case of limitation on weighted precession frequency difference change δv :

g_sg_P < 4 (2π)² m_{3He} δν / (NV ħ <V*(r)>),

where V = $2.07 \cdot 10^{-4}$ m⁻³ is volume of lead glass sample, N = $2.3 \cdot 10^{30}$ is its number density, V*(r) is coordinate dependent part of V(r).

Average potential $\langle V^*(r) \rangle$ was calculated numerically for cell sizes diameter 6 cm x length 6 cm, gap 3 mm between cell inner volume and lead glass diameter 57 mm x length 81 mm.

Result for $\delta v \approx 12$ nHz (65% CL) is presented in next transparency.

Constraints for the coupling constant product $g_s g_P$, as a function of range of the macroscopic force.

The blue solid line represents constraint obtained in [A.N.Youdin et al., PRL **77** (1996) 2170] and black solid line is limitation from the current experiment

SQUID signal near block of bismuth*

*Goodfellow, ferromagnetic admixtures < 1 ppm. The alleged source of low frequency noise is thermoelectric currents coupled with heterogeneity of material.

Result of measurement with block of aluminium

Result from fit for change in ³He precession frequency: $\Delta_V = (-6.2 \pm 0.4) \cdot 10^{-5} \text{ Hz} \propto \Delta B = -1.9 \pm 0.1 \text{ pT}$

Conclusion and Outlook

• A novel ³He/¹²⁹Xe co-magnetometer was used to probe macroscopic short range spin-dependent interactions (pseudo-scalar interaction)

 It was shown that high sensitivity of such co-magnetometer and immunity to the influence of magnetic field fluctuations allow us to reach a new constraints on pseudo-scalar interaction in range 0.2 – 10 cm.

• Further work on materials suitable for samples for such measurements can give an opportunity to improve significantly obtained constrains.