Effect of Rotation of Heavy Nucleus in the Fission by the Cold Polarized Neutrons

¹Gagarski A., ²Coennenwein F., ¹Guseva I., ³Kopach Yu., ⁴Mutterer M., <u>¹Petrov</u> <u>G.,</u> ^{5,6}Tyuirin G., ¹Zavarukhina T., ⁵Kuzmina T., ⁷Nesvizhevsky V., ⁷Soldner T.

¹ Petersburg Nuclear Physics Institute, Gatchina,	RUSSIA
² Physikalisches Institut, Tübingen,	GERMANY
³ Frank Laboratory, JINR, Dubna,	RUSSIA
⁴ Institut für Kernphysik, TU Darmstadt,	GERMANY
⁵ Khlopin Radium Institute, St.Petersburg,	RUSSIA
⁶ Department of Physics, University of Jyväskylä,	FINLAND
⁷ Institut Laue-Langevin. Grenoble.	FRANCE

Ternary fission by polarized neutrons

What happens if we reverse the spin?

The angular distribution of the LCP may be changed!

 $W(\Omega) \sim \sigma_n \cdot [p_f x p_{TP}]$

(K. Schreckenbach, 1988)

Schematic diagram of ROT effect appearance in ternary fission

(Shift of LCP angular distributions)

Main forces acting in rotating system

- ROT: motion in Coulomb field <u>after scission</u> of rotating nucleus, direct indicator of the rotation, allow to determine the velocity and direction of the rotation
- TRI: influence of the rotation onto axial symmetry in the neck just before rupture or directly at rupture moment

Rotation of the system had been confirmed recently by observation of "ROT-effect" for γ -rays from fragments in ²³⁵U(n,f) (Danilyan et al.)

Experimental method

- <u>Measurement of all involved</u>
 <u>angles:</u>
- ✓ Diodes size ~30x30 mm²
- \checkmark Position sensitive MWPCs (~ 2 mm)
- <u>Spectroscopy of fission</u> products:
- ✓ Energies of TPs,
- ✓ Masses and energies of FFs from times of flight
- Neutron spin flip frequency 1 Hz
- <u>Relative measurements</u>

$$A(\theta,...) = \frac{N^0(\theta,...) - N^1(\theta,...)}{N^0(\theta,...) + N^1(\theta,...)}$$

- Control and suppression of false setup asymmetries:
- Comparing of A obtained for events recorded by symmetrical detector combinations
- ✓ Depolarized neutrons beam

The set-up

The TRI-asymmetry in the counts rates

Bla-bla-bla

The ROT- asymmetry in the counts rates

Bla-bla-bla

Dependences of the Asymmetries on LF-LCP angle

$$A(\theta) = S_{ROT} \cdot \left(\frac{Y'(\theta)}{2 \cdot Y(\theta)}\right) + D_{TRI}$$

$$A(\theta) = \frac{N^{0}(\theta) - N^{1}(\theta)}{N^{0}(\theta) + N^{1}(\theta)}$$

- $Y(\theta)$ the experimental angular distribution
- $Y'(\theta)$ its derivative
- **S**_{*ROT*} is characteristic parameter of ROT-effect– the angular shift between TP-distributions for the two spin polarizations
- D_{TRI} characterized TRI-effect it is one half of the relative difference in total probabilities for TPs to be emitted towards the upper (lower) hemisphere for the two spin directions

Corrections:

- degree of polarization of the neutron beam
- admixture of accidental coincidences
- portion of wrongly identified LF-HF
- the geometrical efficiency

Experimental asymmetry dependencies

(08-14).06.2009

Ultra Cold and Cold Neutrons, Physics and Sources

Experimental results (2005 – 2008)

TRI and ROT- effects parameters for α -particle

Reaction	J	S_{ROT} (°)	<i>D_{TRI}</i> (×10³)
²³⁵ U(n,f)*	3-, 4-	(0.215 ± 0.005)	+ (1.7 ± 0.2)
²³³ U(n,f)*	2+, 3+	(0.02 ÷ 0.03)	- (3.90 ± 0.12)
²⁴⁵ Cu(n,f)	2+, 3+	-	(1,30 ± 0.12)
²³⁹ Pu(n,f)	0 ⁺ , 1 ⁺	(0.020 ± 0.003)	- (0.23 ± 0.09) (2008) - (0.08 ± 0.11) (2002)

* In the cases of ^{233, 235}U(n,f) D_{TRI} (×10³) for tritons were measured being equal: - (2.9 ± 0.5) and (0.9 ± 0.6) respectively

Qualitative picture of fission process

Semi-classical estimation of fissioning system rotation momentum

$$R^{2} = \omega^{2} \mathfrak{I}_{\perp}^{2} = \hbar^{2} \cdot (J(J+1) - K^{2})$$

Trajectory calculations

- Starting scission configuration was optimized to describe known experimental angular and energy distributions of ternary particles.
- Main steps: $\sigma(J,K) \rightarrow R \rightarrow \omega$ (R~0.7 h for ²³⁵U)
- To describe the main characteristics of ROT-effect ones need to know the ratios of different resonance cross-sections for two transition states (J_i and K_{ik})

Ranges of the main parameters used in trajectory calculations of LCP emission by rotating fissioning nucleus (~2.5·10⁹ trajectories)

Input parameter	Symbol	Value	Unit
Mass ratio	M _H /M _L	1.44	
Distance between fragments	d	20.2 (18 ÷ 22)	10 ⁻¹³ ст
Initial velocity of heavy fragment	V _H	0.26	10 ⁹ cm/s
Initial distance of LCP from heavy fragment	×α	In between fragments	10 ⁻¹³ ст
Initial distance of LCP from fission axis	y α	0 ÷ 1.83	10 ⁻¹³ cm
Initial energy of LCP	E _α	0.1 ÷ 1.3	MeV
Initial angle of the LCP with respect to the fission axis	$oldsymbol{ heta}_{lpha}$	0 ÷ 180	degree

TRI and ROT effects parameters

Reaction	J	S_{ROT} (°)	D _{TRI} (×10³)
²³⁵ U(n,f)	3-, 4-	0.215 ± 0.005	+1.7 ± 0.2
²³³ U(n,f)	2 ⁺ , 3 ⁺	0.02 ÷ 0.03	-3.90 ± 0.12
²³⁹ Pu(n,f)	0+, 1+	0.020 ± 0.003	-0.23 ± 0.09

- Variation of ROT-effect values: may be explained by different mixtures of (*J*,*K*) channels in the proper cross-sections
- Variation of TRI values : connected with interplay between Coriolis and Catapult forces. Catapult forces are appeared always if d₀/dt ≠ 0, while values of Coriolis forces depend on vibrations related with different K values). Higher K → lower R!

Results of the ROT-effect shift calculations in

²³⁵U(n,f) (in degrees)

J = 3	K = 0	K = 1	K = 2	K = 3
J = 4				
K = 0	0.184	0.192	0.215	0.253
K = 1	0.171	0.178	0.201	0.240
K = 2	0.129	0.140	0.160	0.198
K = 3	0.060	0.068	0.091	0.129
K = 4	-0.037	-0.029	0.006	0.032

 $\sigma(J=4)/\sigma(J=3) = 1.8$ (Yu. Kopatch et al)

Results of the ROT-effect shift calculations in ²³³U(n,f) (in degrees)

J =2	K = 0	K = 1	K = 2
J = 3	•		
K = 0	0.032	0.050	0.102
K = 1	0.021	0.038	0.090
K = 2	- 0.013	0.004	0.056
K = 3	- 0,070	- 0.053	0.0006

 $\sigma(J=4)/\sigma(J=3) = 1.5$

(08-14).06.2009

Ultra Cold and Cold Neutrons, Physics and Sources

Results of the ROT-effect shift calculations in ²³⁹Pu(n,f) (in degrees)

J = 0 J = 1	K = 0
K = 0	0.054
K = 1	0.027

0.027 if $\sigma(J = 0)/\sigma(J = 1) = 1.53$ (from the old BNL-data

But $\sigma(J = 0)/\sigma(J = 1) = 4.42$ (from the new BNL-data)!!!!

J	Old data	J	New data
0	- 0.576	1	- 150.46
1	+ 0.296	1	- 15.460
1	+ 7 820	0	- 6.917
1	1.020	0	- 0.219
		1	+ 0.296
		1	+ 7.820

The data analysis had shown very high sensitivity of the results to the main parameters of fission process dynamics

Nearest perspectives

- 1. TRI and ROT-effects measurements in $^{234}U^*$ (*J* =2+, 3+) with better accuracy
- Compare TRI and ROT-effects in ²³⁴U* and ²⁴²Pu* having the same spins of transition states (J = 2+, 3+)!
- 3. Compare TRI and ROT-effects in the pair $^{236}U^*$ and $^{246}Cm^*$ (J = 3, 4)
- Direct comparison TRI- μ ROT-effects values in ²³⁵U(n,f) reaction at the energies of cold neutrons and in vicinity of 0.3 eV resonance
- 6. Investigate TRI- и ROT-effects values for the protons in ternary fission of ²³⁵U
- 7. Analysis of possibility to study TRI- и ROTeffects in ternary fission of polarised ²³⁵U
- Continuation of the search investigations of TRI- μ ROT-effects for fission neutrons and γ-rays in the reactions ^{233,235}U(n,f) ²³⁹Pu

Conclusion

- The new effects of T-odd asymmetry of the LCP emission in ternary fission being observed in the frameworks of the wide international collaboration opened the new and perspective possibilities for the studies of low energy fission dynamics.
- Physical results have being obtained already in the first investigations demonstrated close connections of the main characteristics of the ROT and TRI-effects with the properties of transition states and parameters of fission products near the rupture point.
- Taking into account the decisive role of the transition states parameters in the T-odd effect mechanism of appearance of particular interest is further development in the nuclear data acquisition for low energy neutrons initiating the fission of ^{233,235}U and ²³⁹Pu.
- Detailed theoretical investigations of the T-odd asymmetry phenomena being attractive use for experimental data analysis are a prime necessity!

Thank you for attention!

Fitting for individual slices of the parameters

TRI-effect in ²³⁵U (*D*_{TRI} "SCALING" coefficient)

Trajectory calculations of ROT effect in ²³⁵U

Статистическая модель Бунакова для TRI- асммметрии

- Есть некоторый вклад начального спина нейтрона в соответствующую проекцию углового момента осколков в момент деления
- ТР уносит угловой момент из делящейся системы
- В зависимости от направления эмиссии ТР, соответствующая проекция углового момента осколков увеличивается или уменьшается
- плотность уровней системы зависит этой проекции, а в статистической модели плотность уровней определяет вероятность

КАЧЕСТВЕННАЯ КАРТИНА ПРОЦЕССА ДЕЛЕНИЯ

Наиболее актуальная проблема современной физики деления – динамика спуска сильно деформированного ядра с барьера и его разрыв!

Theoretical equation for T-odd asymmetry coefficient in statistical model (V. Bunakov et al.)

Because of anticorrelation $E_{xi} = E_{ix}^{max} (1 - E_{\alpha} / E_{\alpha}^{max})$ and if $\langle E_{xi} \rangle \sim 6 \text{ MeV}$ $D_i \sim 1/(6 - 0.2 E_{\alpha})^{1/2}$

Исследование Т-нечётной асимметрии в зависимости от параметров продуктов деления

- Нейтронный пучок (PF1 в ИЛЛ):
 <λ> ~ 4.5Å; Φ_{capture} ~6×10⁸ n/cm²s; продольно поляризован ~ 94 ± 1 %; радиочастотный флиппер 1 Гц
- Мишень ~3.4 мг ²³³U (UF₄) ~100 мкг/см² на тонкой титановую пленке (~100 мкг/см²)
- 12 + 12 PIN диодов для TP, каждый 30 × 30 мм, толщина 380 мкм
- Определение типа частицы по времени нарастания сигналов с PIN диодов
- Координатная чувствительность МWPC (~2 мм по обеим координатам) ⇒ положение на мишени и углы ⇒ можно определить:
- массу осколков : $M1/M2 \approx T1/T2$,
- кинетическую энергию: E=E1+E2 ≈ L2·A/2T1·T2
- (Разрешение невелико ⊗, поскольку ⊿Т/Т~1/10)

Model of ROT-effect

- The collective rotation lasts also during the acceleration phase of TPs in Coulomb field of the FFs.
- The rotation deflects the LCP trajectory in the coordinate frame linked with FFs towards or away from the LF depending on the rotation direction.

TRI-EFFECT OF T-ODD ASYMMETRY FOR THE LIGHT CHARGED PARTICLE EMISSION IN TERNARY FISSION

W(Ω) = 1 + <D_{Icp} $> \sigma_n mp_f x p_α$]

nucleus spin <d></d>	²³⁴ U*(+2, +3)	²³⁶ U*(-3, -4)	²⁴⁰ Pu*(+1, +0)	²⁴⁶ Cm*(+2, +3)
<d<sub>\alpha>.10⁻³</d<sub>	- (3.90 ± 0.12)	+ (1.24 ± 0.15)	- (0.08 ± 0.11)	+ (1.30± 0.48)
<d<sub>t>·10⁻³</d<sub>	$-(2.9\pm0.5)$	+ (0.90 ± 0.61)		

Questions to the theory:

- Different values of TRI-effects in very similar fissioning systems
- Absence of TRI-effects in ²³⁹Pu fission (relatively small spin ets)
- Very similar TRI-effects for α and t-particles with different spins

Remark: Search for TRI- u ROT-effects for neutrons will be performed in the framework of the PNPI of RAS

Program for the search and investigations so called

"scission neutrons" emitted near the rupture point.

Studies of "ROT-effect" for γ -rays will be performed in connection with a problem of large oriented moments of fission fragments.