

Institut für Kernchemie

Cubic boron nitride- a new material for ultracold neutron application

University of Mainz

W.Heil, J.V.Kratz, Th.Lauer, M.Meister, P. Reichert Ch. Plonka-Spehr, Yu.Sobolev, J.Zenner

> IST Braunschweig M.Keunecke

PNPI, Gatchina Yu. Borisov

JNRI, Dubna Yu.Pokotylosvki

Thorsten Lauer Saint Petersburg 2009

Institut für Kernchemie

Cubic boron nitride- a new material for ultracold neutron application & Status of the UCN sources in Mainz

University of Mainz

W.Heil, J.V.Kratz, A.Kraft, Th.Lauer, Ch. Plonka-Spehr, Yu.Sobolev

Thorsten Lauer Saint Petersburg 2009

Neutron optical potential

N: scattering center density b: bound coherent scattering length M: neutron mass

Critical velocity:

Common materials:

material	Fermi potential [neV]	velocity [m/s]
Ве	252	6.9
Ni	252	6.9
stainless steel	200	6
Al	54	3.3

Non common Materials

material	Fermi potential [neV]	velocity [m/s]	Typical Application	disadvantage
⁵⁸ Ni	335	8	UCN guides	Expensiv
BeO	257	7.2	Storage vessel	toxic
Diamond	305	7.6	Storage vessel	Production (H2)
DLC	250 - 270	6.9 - 7.2	Storage vessel, guides	Production (H2)

Looking for new candidates with improved characteristics

Boron nitride

BN: 24,83 g·mol⁻¹ molar mass: scattering length: 14.66 fm insulator: >10¹⁵ Ohm cm melting point: 2000°C kubisches BN hexagonales BN Density: 3,45 g·cm⁻³ 2,25 g·cm⁻³ Fermipotential: 338 neV 220neV

Film Production

Coating performed at IST Braunschweig (M.Keunecke)

Reactive RF- sputtering in nitrogen Atmosphere from boron carbide target

Special procedure was developed by the IST to obtain 2µm layers of cBN

c-BN-Schicht ca. 0,2 μm RMS-Rauhigkeit 2,27 Å

Infrared spectrum of typical samples

cBN peak at 1090 1/cm hBN fraction from peak at 790 1/cm

First samples

Natural boron (20% $^{10}\mbox{B}$)

 $V_F = 338 neV$

UCN death !!!

767 barn absorption

Isotopic enriched ¹¹B

0.0055 barn absorption

+ 2 barn of N₂

Standard 3" Silicon wafer Coated with 300nm of cBN structur

nat. Ni 4.5 barn

Neutron reflectometry

Cold neutron (4.8 A) reflectometry performed at HMI (Th.Krist)

Transmission of UCN

Time of flight method

Result of the fit

<u>305 +/- 15neV</u>

91% of theoretical density

Check of TOF methode

Crosscheck:

500nm Ni on Si wafer

Fit Result :

245 +/- 15neV

98.2% of theoretical density

Density verified by x-ray diffraction measurement !

*First c*¹¹*BN sample (96.22%* ¹¹*B)*

First boron 11 sample:

- 340nm cBN on Si wafer
- Stresses in layer !!
- Production parameters are different from standard target

- smaller absorption (100barn) !!
- Preliminary Result of Fermi Potential

<u>~ 315 +/- 10neV</u>

~ 93% of theoretical density

Conclusion and Outlook

- First measurement of the Fermi Potential of natural and isotopic enriched cubic boron nitride
- Further improvements of production parameters for isotopic boron are needed
- Investigation of losses during storage of ultracold neutrons in a vessel coated with highly enriched cubic boron-11 nitride

Conclusion and Outlook

Investigation of B4C for non depolarizing UCN guides based on B₄C

Expected: 220neV Measured: ~ 211neV

Conclusion and Outlook

Production of UCN guides based on discussed materials

Ultracold neutrons at the TRIGA Mainz

Triga Mark II

Pulse mode 250MW in peak constant power 100kW

UCN C (tangential beamline)

operation since 2006) 200000 UCN/2\$ Puls Filling time 2.2 sec Helium consumption 16l/h Crystal Preparation 3 hours

UCN D (Radial beamline)

Source ready! Waiting for German TÜV approval

Munich/Mainz Prototype source

Investigation of sD2

premoderator should be separated from converter volume

Investigation of sD2

30min Cycling improved transportation wof deuterium

Investigation of sH2

First measured TOF spectras of a solid hydrogen UCN source

New beamline at radial channel

New Design of the converter section

New beamline at radial channel

Blablabla !!

Thank you for your attention !