

Q-Bounce: The dynamics of a quantum wave packet of a neutron in the Earth's gravity field

Tobias Jenke

¹⁾ Atominstitut der Österreichischen Universitäten, Wien, Austria
 ²⁾ Physik-Department E18 TU München, Munich, Germany

7th International UCN Workshop

St. Petersburg, June 2009

Outline

- Motivation: Gravity Experiments in the 21st century?!
- How to realize a quantum-bouncing ball with ultracold neutrons with Q-Bounce
- Sensitivity to Non-Newtonian gravity
- Outlook

Gravity experiments in the 21st century ?!

Q-Bounce – a gravity experiment with UCN, sensitive to the gravity potential at distances between 1 and 10 microns

Interests:

- test of Newton's law of gravity at short distances (1-10 microns)
- study of the connection between quantum mechanics and gravity
- constrain existing limits for Non-Newtonian gravity

Q-Bounce – An Overview

- successor of the gravity experiments at PF2/ILL (1998-2005) [ILL (Grenoble), Physikalisches Institut (Heidelberg), PNPI (St. Petersburg), JINR (Dubna)]
- completely new, portable setup
- designed and constructed at Physikalisches Institut in Heidelberg in 2007/08

collimating blades

beam pipe

vacuum chamber

- improvements:
 - stability of the setup
 - quality of the neutron mirrors
 - quality of our track detectors
 - automated read-out procedure

• 2nd run: 2009 at PF2/ILL (50 days)

Tobias Jenke, 7th International UCN Workshop, St. Petersburg, 13.06.2009

neutron mirror setup

detector

Trapping UCN's in the earth's gravitational field

Q-Bounce: The Neutron Mirror Setup

Q-Bounce: The Neutron Mirror Setup

Tobias Jenke, 7th International UCN Workshop, St. Petersburg, 13.06.2009

7

High-resolution track detector

State of the Art

Simultaneous fit of TE2 and TE5

Search for Non-Newtonian gravity $\phi(r) = -G_4 \frac{m}{r} (1 + \alpha \cdot e^{-r/\lambda}) \quad \longrightarrow \quad \phi'(z) = -2\pi\alpha\lambda^2 G_4 m\rho \cdot e^{-z/\lambda})$ a) $x_2 - x_1$ x_1 scatterer neutron mirror 22 in front of the step behind the step, coating on top UCN 21 behind the step, coating on the bottom 20 neutron mirror coating 19 section I section II <z> [μμ] 17 16 b) 15 x_1 $x_2 - x_1$ 14 13 scatterer coating 12 UCN 11 10 neutron mirror 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 neutron mirror x [m] section I section II

Summary

- It is of interest to probe Newton's Inverse Square Law of Gravity at short distances, e.g. µm-range.
- This is the main goal of the Q-Bounce experiment(s).
- The Q-Bounce setup is working, it is wellcharacterized and fulfills all criteria to deliver data with small systematic effects.
- Now: Analysis of data.

The Team: Hartmut Abele, T. Jenke, Tobias Lins

Thanks to:

ANP group of PI Heidelberg, e.g. Martin KleinD. Stadler and H. Filter (PI Heidelberg)D. Seiler (E12, TU Munich)P. Geltenbort, T. Brenner & R. Bebb (ILL, Grenoble)H. Saul (TU Munich) and H. Lemmel (ATI Vienna)

Appendix

Q-Bounce – An Overview

Stability of the setup: Inclination control

UCN's for Gravity Experiments - The natural choice -

neutron properties:

•no charge: $(-0.4 \pm 1.1) \cdot 10^{-21} e$

Baumann et. al.: Phys.Rev.D37:3107-3112,1988

T/T

magnetic shielding required!

- •small polarizability: $(11.6 \pm 1.5) \cdot 10^{-4} fm^3$ PDG average 2008
- •sufficient lifetime for in-flight-experiments
- •magnetic moment: $\overline{\mu}_{n}$

$$V_{mag} = -1.913 \vec{\mu}_N \implies V_{mag} \approx 60 neV$$

UCN properties:

- •kinetic energy:
- •velocity:

 $E_{kin} < 300 neV$

 $\left(0 \le v_x \le 15\right) m / s$

•amount:

not enough yet

Gravity experiments in the 21st century !!!

Gravity experiments in the 21st century ???

Vibrations

Vibrations may induce state changes!

Adjusting the horizontal velocity distribution $f(v_x)$

