The Dark Universe

A.V. Ivanchik Ioffe Physical-Technical Institute

Principles of modern Cosmology

<u>Hubble's Discovery Paper – 1929</u>

1929

$H_0 \approx 500$ km/c/Mpc

 $\Omega_{tot} = 1.02^{+0.02}_{-0.02}$ $\Omega_{\text{tot}} = 1.02_{-0.02}^{-0.02}$ w < -0.78 (95% CL) $\Omega_{\Lambda} = 0.73^{+0.04}_{-0.04}$ $\Omega_{h}^{h^{2}} = 0.0224_{-0.0009}^{+0.0009}$ $\Omega_{L} = 0.044^{+0.004}_{-0.004}$ $n_{\rm b} = 2.5 \text{ x } 10^{-7+0.1 \text{ x} 10^{-7}} \text{ cm}^{-3}$ m < 0.23 eV (95% CL) $T_{\rm cmb} = 2.725^{+0.002}_{-0.002} \,\rm K$ $n = 410.4^{+0.9}$ cm⁻³ $\eta = 6.1 \times 10^{-10} + 0.3 \times 10^{10}$ $\Omega_{\mu}\Omega_{\mu}^{-1} = 0.17_{-0.01}^{+0.01}$ $\sigma_8 = 0.84 + 0.04 \text{ Mpc}$ $\sigma_{8}\Omega_{-0.05}^{0.5} = 0.44_{-0.05}^{+0.04}$ $A = 0.833^{+0.086}_{-0.083}$

Precision Cosmology

 $n_{\rm c} = 0.93^{+0.03}_{-0.03}$ $dn/d \ln k = -0.031^{+0.016}_{-0.018}$ *r*<0.71 (95% CL) $z_{dec} = 1089^{+1}_{-1}$ $\Delta z_{dec} = 195^{+2}_{-2}$ $h = 0.71^{+0.04}_{-0.03}$ $\begin{array}{ll} \Omega_{m}^{b}h^{2} = 0.135 \substack{+0.008 \\ -0.009} & t_{0} = 13.7 \substack{+0.2 \\ -0.2} \text{ Gyr} \\ \Omega_{m}^{c} = 0.27 \substack{+0.04 \\ -0.04} & t_{dec} = 379 \substack{+8 \\ -7} \text{ kyr} \\ \Omega_{v}^{c}h^{2} < 0.0076 (95\% \text{ CL}) & t_{r} = 180 \substack{+220 \\ -80} \text{ Myr} (95\% \text{ CL}) \end{array}$ $\Delta t_{dec} = 118^{+3}_{-2} \text{ kyr}$ $Z_{eq} = 3233^{+194}_{-210}$ $\tau = 0.17^{+0.04}_{-0.04}$ $z = 20^{+10}_{-9} (95\% \text{ CL})$ $\theta_{1} = 0.598 + 0.002$ $d_{A} = 14.0^{+0.2}_{-0.3} \,\mathrm{Gpc}$ $l_{1} = 301^{+1}_{-1}$ $r = 147^{+2}_{-2}$ Mpc

There is very interesting phenomenon:

the more we know about the Universe

than more and more it is getting **dark**

Dark Energy

Dark Matter

Dark Ages

Particle Relic From The Bang

- neutrinos
- sterile neutrinos, gravitinos (warm dark matter)
- LSP (neutralino, axino, …) (cold dark matter)
- LKP (lightest Kaluza-Klein particle)
- axions, axion clusters
- solitons (Q-balls; B-balls; Odd-balls, ...
- supermassive wimpzillas

 $\frac{\text{Mass range}}{10^{-6} \text{ eV} (10^{-40} \text{ g}) \text{ axions}}$ $\frac{10^{-8} \text{ M}_{\odot} (10^{25} \text{ g}) \text{ axion clusters}}{10^{-8} \text{ M}_{\odot} (10^{25} \text{ g}) \text{ axion clusters}}$

Interaction strength range Noninteracting: wimpzillas Strongly interacting: B balls

(hot dark matter)

The key experiment which gives us the most precise cosmological information

The Nobel Prize in Physics

1978 for their discovery of the cosmic microwave background radiation

Arno A. Penzias 1/4 of the prize USA

Robert W. Wilson 1/4 of the prize USA

2006

for their discovery of the blackbody form and anisotropy of the cosmic microwave background radiation

John C. Mather 1/2 of the prize USA

George F. Smoot 1/2 of the prize USA

Cosmic Microwave Background Radiation

$$B_{\nu} = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/kT} - 1}$$

 $T = 2.725 \pm 0.002 \text{ K}$

$$T = T_0(1+z)$$

$$\eta = \frac{n_{\gamma}}{n_b} \cong 10^9$$

The most precise experiments

What is Dark Energy? What is Dark Matter?

Great expectation are concerned with two launched mission

Precision Cosmology

Large Hadron Collider

Fundamental Fields and Particles

Thank you for your attention

