

Results from ³He/ ¹²⁹Xe clock comparison experiments for testing Lorentz invariance on the bound neutron

• Institut für Physik, Universität Mainz:

C. Gemmel, W. H., S. Karpuk, K. Lenz, Ch. Ludwig, Y. Sobolev, K. Tullney

• <u>PTB, Berlin:</u>

M. Burghoff, S.Knappe-Grüneberg, W. Kilian, W. Müller, A. Schnabel, F. Seifert, L. Trahms

<u>University of Virginia:</u>

St. Baeßler

Outline:

- Standard Model Extension (Kostelecky)
- ➢ ³He, ¹²⁹Xe clock based on free nuclear spin precession

> New limits on LV from clock comparison experiments

Conclusion and Outlook

How to obtain low-energy effective theory?

Idea: - examine manifestations of Lorentz/CPT violating vacuum

construct all possible modifications to SM (previous sec.)

Advantage: - independent of underlying theory - describes all low-energy effects of Lorentz violation

Standard-Model Extension

A. Kostelecky and C. Lane: Phys. Rev. D 60, 116010 (1999)

Modified Dirac equation for a free spin ½ particle (w=e,p,n)

Kostelecky et al., arXiv:0801.0287v2

Coefficient	Proton	Neutron	Electron	Coefficient	Proton	Neutron	Electron	
$egin{array}{c} & & & & & & & & & & & & & & & & & & &$	10^{-27} GeV 10^{-27} GeV	10^{-31} GeV 10^{-31} GeV	10^{-31} GeV 10^{-31} GeV 10^{-30} GeV	$\begin{array}{c} \tilde{H}_{XT} \\ \tilde{H}_{YT} \end{array}$	_	10^{-26} GeV 10^{-27} GeV	10^{-27} GeV 10^{-27} GeV	
\tilde{b}_T	_	$10^{-27}~{\rm GeV}$	10^{-27} GeV	\tilde{H}_{ZT}	_	$10^{-27} { m GeV}$	10^{-27} GeV	
$b_J^* \ (J = X, Y, Z)$	_	_	-	\tilde{g}_T	_	$10^{-27}~{\rm GeV}$	$10^{-27}~{\rm GeV}$	
\tilde{c}_{-}	$10^{-25}~{\rm GeV}$	$10^{-27}~{\rm GeV}$	$10^{-19}~{\rm GeV}$	\tilde{g}_{c}	—	$10^{-27} { m GeV}$	10^{-27} GeV	
\tilde{c}_Q	10^{-22} GeV	_	10^{-19} GeV	g_Q	—	—	_	
\tilde{c}_X	10^{-25} GeV	10^{-25} GeV	10^{-19} GeV	<i>g_</i>	_	—	_	
\tilde{c}_Y	10^{-25} GeV	10^{-25} GeV	10^{-19} GeV	$\tilde{g}_{TJ} \ (J = X, Y, Z)$	—	—	_	
\tilde{c}_Z	10^{-24} GeV	10^{-27} GeV	10^{-19} GeV	\tilde{g}_{XY}	—	—	_	
\tilde{c}_{TX}	10^{-20} GeV	_	10^{-18} GeV	\tilde{g}_{YX}	—	_	—	
\tilde{c}_{TY}	10^{-20} GeV	_	10^{-18} GeV	\tilde{g}_{ZX}	_	_	—	
\tilde{c}_{TZ}	10^{-21} GeV	_	$10^{-20} { m GeV}$	\tilde{g}_{XZ}	_	_	_	
\tilde{c}_{TT}	_	_	10^{-18} GeV	\tilde{g}_{YZ}	—	_	—	
				\tilde{g}_{ZY}	—	_	—	
\tilde{d}_{+}	_	10^{-27} GeV	10^{-27} GeV	\tilde{g}_{DX}	$10^{-25} { m GeV}$	10^{-29} GeV	10^{-22} GeV	
\tilde{d}	_	10^{-27} GeV	10^{-27} GeV	\tilde{g}_{DY}	$10^{-25} { m GeV}$	$10^{-28} { m GeV}$	10^{-22} GeV	
\tilde{d}_{O}	_	10^{-27} GeV	10^{-27} GeV	\tilde{g}_{DZ}	_	_	_	
aug được	_	10^{-27} GeV	10^{-27} GeV					
dy 7	_	10^{-26} GeV	10^{-27} GeV					
\widetilde{d}_{ZX}	_	-	10^{-26} GeV	Clo	Clock-comparison			
\tilde{d}_X	10^{-25} GeV	$10^{-29} { m GeV}$	10^{-22} GeV			nonto		
\tilde{d}_Y	$10^{-25}~{\rm GeV}$	$10^{-28}~{\rm GeV}$	10^{-22} GeV		experir	nents		
\tilde{d}_Z	_	_	10^{-19} GeV					

coupling of spin $\vec{\sigma}$ to background field: $V = -\vec{\tilde{b}} \cdot \vec{\sigma}$

Clock-comparison: Zeeman term drops out

$$\Delta \omega = \omega_A - \frac{\gamma_A}{\gamma_B} \omega_B = \left(1 - \frac{\gamma_A}{\gamma_B}\right) \cdot \omega_{LV}$$

CMB dipole

v = 368 km/s $\Delta T_{dip} \approx 3.3$ mK

galactic coordinate system

 $(l, b) = (264^{\circ}.31\pm0^{\circ}.04\pm0^{\circ}.16, +48^{\circ}.05\pm0^{\circ}.02\pm0^{\circ}.09)$

measurement on 01.10.2007 at

PTB-Berlin (52°31' north, 13°25' east)

horizon coordinate system

Detection of magnetic field produced by oriented nuclei

(Cohen-Tannoudji et al., PRL 22 (1969),758)

> ³He spin precession: T₂* = 2h 20min

sensitivity of Rb-magnetometer: 100fT@ BW 0.3 Hz

ightarrow P_{He} \approx 5% @ 4 mbar

Improvement of measurement sensitivity:

- SQUID-detectors@2 fT/√Hz
- Iaser for OP of ³He @ P> 70%

BMSR 2, PTB Berlin

J. Bork, et al., Proc. Biomag 2000, 970 (2000).

(residual field < 2 nT) LT_c-SQUID 7.2 mm 7.2 mm

magnetic guiding field $\approx 0.4 \ \mu T$ (Helmholtz-coils)

 $\left| \vec{\nabla} B_{x,y,z} \right| \approx 20 \ pT \ / \ cm$

Sensitivity of a free spin-precession ³He clock

³He / ¹²⁹Xe co-magnetometer

Analysis of phases

 $\Delta \upsilon_{\perp} = \sqrt{\delta \upsilon_{x}^{2} + \delta \upsilon_{y}^{2}} = (0.8 \pm 4.7) \, nHz \,\,(67\% \,\,\text{C.L.})$

Phys. Rev. D 60, 116010 (1999)

$$\sin \chi \cdot \left| -3.5 \cdot \widetilde{b}_J^n + 0.012 \cdot \widetilde{d}_J^n + 0.012 \cdot \widetilde{g}_{D,J}^n \right| \le 2\pi \cdot \delta \upsilon_J \cdot \hbar \qquad J = X, Y$$

$$\widetilde{b}_{\perp}^{n} = \sqrt{(\widetilde{b}_{X}^{n})^{2} + (\widetilde{b}_{Y}^{n})^{2}} \le 7 \cdot 10^{-33} GeV$$

ASD of residual phase noise

observed fluctuations decrease as $\tau^{-1/2}$ indicating the presence of a white phase noise

CRLB power law ✓

Spin maser experiments with ³He and ¹²⁹Xe set the best limiton LV effects for the neutron(D.Bear et al., PRL 85 (2000) 5038)

Conclusion and Outlook

> ³He , ¹²⁹Xe clocks based on free spin precession \rightarrow long spin coherence times

 $T_{2,He}^* > 60 hours$ $T_{2,Xe}^* = 3-6 hours$ (so far limited by $T_{1,wall}$)

Magnetometry

 $\langle \delta B \rangle \approx 1 fT @ 200 s \longrightarrow$ $\langle \delta B \rangle \approx 10^{-4} fT @ 1 day$

magnetometer for nEDM experiments

> clock comparison

SME (Kostelecky):
$$V=-\widetilde{b}\cdot\vec{\sigma}$$

$\operatorname{Coefficient}$	Proton	Neutron	Electron
\tilde{b}_X	$10^{-27}~{\rm GeV}$	$10^{-31}~{\rm GeV}$	10^{-31} GeV
\tilde{b}_Y	10^{-27} GeV	10^{-31} GeV	$10^{-31}~{\rm GeV}$
\tilde{b}_Z	_	_	$10^{-30}~{\rm GeV}$
\tilde{b}_T	_	$10^{-27}~{\rm GeV}$	$10^{-27}~{\rm GeV}$

improved sensitivity: March 2009 run

new limits on the bound neutron

$$\left| \widetilde{b}_{X}^{n} \right| \leq 4 \cdot 10^{-33} \ GeV$$
$$\left| \widetilde{b}_{Y}^{n} \right| \leq 5 \cdot 10^{-33} \ GeV$$

C.Gemmel et al., arXiv:0905.3677 submitted to EPJ D

[h]

[h]

[h]

