

New challenge: the ESS

T.Grosz, F.Mezei, L.Rosta

Page 1

• ESS: why?

• How?

Summary

• (Why in Debrecen?)

• ESS: why?

• How?

• (Why in Debrecen?)

Summary

Neutron research in Europe: ~4000 scientists, 11 facilities (and decreasing): ~ 330 M€a

- ESFRI 2006 road map: need for "top tier" neutron source for Europe

UUIN-1

ESS will be the world's most powerful source of neutrons. Its built-in upgradeability (more than the initial 20 instruments, more power, more target stations) makes it the most cost-effective top tier source for 40 years or more. A genuine pan-European facility, it will serve 4,000 users annually across many areas of science and technology.

St.Petersburg, 12 June 2009

Energy efficiency is key for high intensity neutron beam production: fast neutrons produced / joule energy or heat

Fission reactors: $\sim 10^9$ (in ~ 50 liter volume)Spallation: $\sim 10^{10}$ (in ~ 2 liter volume)Fusion: $\sim 1.5 \times 10^{10}$ (in ~ 2 liter volume)
(but neutron slowing down efficiency reduced by ~ 20 times)Photo neutrons: $\sim 10^9$ (in ~ 0.01 liter volume)Nuclear reaction (p, Be): $\sim 10^8$ (in ~ 0.001 liter volume)Laser induced fusion: $\sim 10^4$ (in $\sim 10^{-9}$ liter volume)

Spallation: most favourable for the foreseeable future

Pulsed source provides for more efficient use of the neutrons produced:

by the use of time-of-flight (TOF) methods:

Pulsed source provides for more efficient use of the neutrons produced:

by the use of time-of-flight (TOF) methods

Total gain potential in efficiency: x 6 energy of neutron production x 10 – 100 by TOF on pulsed sources

⇒ Quantum leap in performance:

5 MW ESS: start with as many neutrons as e.g. ILL: the FIRST CHALLENGE of the NEXT GENERATION

Progress in neutron sources

• ESS: why?

• How?

Summary

• (Why in Debrecen?)

Development of neutron sources

- Parasitic use of energy research reactors (1949...)
- Dedicated neutron beam reactors (1958,....)
- ILL (1972): limit of power at reasonable costs
- Pulsed sources (1960's, Dubna): more efficient use of fewer neutrons produced
- Spallation sources (1970's,...) less heat / energy per neutron produced
- MW class pulsed spallation sources (SNS, J-PARC) Leap in source performance to surpass ILL: fewer neutrons more efficiently produced and used
- SNS & J-PARC: reach limits of traditional pulsed spallation source technology: shock waves in target, space charge in accelerator ring,....

~ 1 μs pulse length, huge instantaneous heat deposition (~ 15 GW for 23 kj/pulse of SNS)

• Proton pulse length poorly matches the 10 – 300 μ s neutron moderator response time

 Pulse lengths < 4 ms meets resolution requirements in some key applications (e.g. SANS, NSE)

~ 15 x

Hungary for

SNS (Oak Ridge, USA): successfully achieved 0.5 MW power !! (goal 1.4 MW)

"Long" proton pulses using linear accelerators:

• Linear accelerators can produce the same beam energy per pulse in ~ 100 μ s pulses at much reduced costs

~ 60 % of accelerator parts and complexity removed

 Longer - hence more intense - pulses (ms) are advantageous for cold and thermal neutron applications: > 10¹⁴ n/cm²/pulse (compared to < 10¹³ for SNS) at instantaneous power of ~ 90 MW

 Total energy per pulse of a few hundred kJ is household experience (ESS: 300 kJ/pulse)

LP target operation: to 98 % in thermohydraulic equilibrium (vs. 100 % non-equilibrium for short pulses) "Long" proton pulses using linear accelerators:

 Longer - hence more intense - pulses (ms) also provide higher peak flux at comparable costs and technical complexity

Example (> ESS reference power): 450 kj/pulse long pulses (350 MW inst.) vs 23 kj/pulse short pulse (15 GW inst.: SNS)

Hungary for

Huge gain in useful neutron intensity Example: reflectometer (~15 m)

 $\delta\lambda/\lambda \sim 5$ % at 4 Å

Source figure-of-merit (F):

peak brilliance, if the well shaped pulses are long enough to avoid excessive resolution

Source figure-of-merit (F): time average flux, **if only one point in** (Q, ω) space is of interest (e.g. polarization analysis in single crystals, CRYOPAD,...)

Long pulse source: optimized for cold neutrons Conservative, well established technologies, Innovative use,

Reduced complexity

⇒ Leap in cold neutron performance at very favorable costs

ESS (5 MW LP):

- Construction costs comparable to SNS and J-PARC
- Operational costs comparable to ILL (36 MW vs. 70 MW!)
- Many beam lines possible with long guides (similar to continuous sources)
- High power consumption efficiency of linear accelerators
- No alternative technology in sight to be available within decades
- A new approach with large long term development potentials and perspectives: 30 MW? 100 MW?

Technical basis

- ESS reference design 2003 for LP target station
 - fully validated by SNS experience (incl. each component)
 - no major innovation proposed since
 - no substantially different new approach in sight
- Optimization of reference design: major effort > 30 M€to consider all aspects and complexity (e.g. change of final proton energy → changes in proton current, radiation damage, target vessel life time, ...)
- From reference design to optimized engineering design:
 - collective effort by Pan-European ESS team and collaboration partners; subject to international review and common decision making process by ESS partners
- Accumulated new experience will need careful analysis in the framework of optimization effort (E.g. at SNS some built in linac features – couplers, piezo cavity compensation – are not used. Can they be left out?)

Main technical issues for engineering design

- Linac frequency, accelerating gradient, possible design simplifications, final energy, upgradeability
- Choice of target, incl. upgradeability: mercury? Liquid lead or lead-bismuth? Rotating solid target wheel? (some R&D)
- If other than mercury proves to be favored, substantial R&D need will occur (cf. SNS switch to superconducting linac)

Instrumentation

- Catalyze global development in collaboration with leading sources and teams.
 ILL, ISIS, SNS, J-PARC, FRM-II, PNPI, JINR, ...
- Select best state-of-the-art technology in view of the latest scientific needs... as late as possible: from ~ 2013

UCN factory at ESS

opportunity 3 - 4 orders of magnitude higher UCN densities

Separate spallation target with solid coldsource $(D_2 \text{ or } CD_4)$ A.Serebrov

Shutter operation adapted to pulse structure *H.Rauch* Maximum gain at low repetition rates

ESS: 16.67 Hz Yu. Pokotilovski

• ESS: why?

• How?

• Why in Debrecen?

Summary

Summary of conditions / advantages

- ESS: Pan-European project, Pan-European control, best possible Pan-European team
- Debrecen offers outstanding, dynamically developing academic, research, cultural, industrial, workforce, educational and quality of life environment.
- Rich Hungarian tradition in neutron science: BNC active user facility, Hungarian discoveries (Neutron Spin Echo, Supermirrors, Neutron holography, Long pulse neutron sources....)
- Well established and continuing tradition in nuclear industry, nuclear safety and regulatory environment
- Good geographical and geological conditions (site preparation similar to SNS)

Site selection

CITY OF DEBRECEN

•The second largest city in Hungary in a region dynamically developing, main beneficiary of EU stuctural funds.

•Access: airport, motorway, train

•Scientific centre: University (30000 students), ATOMKI, high added value indutry

 Rich cultural life and a wealth of hospitality

ESS in Hungary: (would be) the best choice for Europe

Thank you for attantion!