Monte Carlo simulation of the experiment MAMBO I and possible correction of neutron lifetime result

A. Fomin, A. Serebrov

PNPI, Gatchina, Russia

7th UCN Workshop "Ultra Cold & Cold Neutrons Physics & Sources" 8-14 June 2009

Introduction

W.Mampe et al., Phys. Rev. Lett. 63, 593 (1989)
 W.Mampe et al., Nucl. Instr. and Meth. A 284, 111 (1989)

FIG. 1. Sketch of the apparatus.

Results of the experiment

Storage interval (s)	τ_{β} uncorrected (s)	$\Delta \tau$ correction (s)	τ_{β} corrected (s)
112-225	893(10)	~ - 2	891(10)
225-450	885.0(4)	+3.5	888.5(4)
450-900	881.2(2.5)	+8	889.2(2.5)
900-1800	878.0(1.5)	+9	887.0(1.5)
1800-3600	878.5(2.6)	+8.6	887.1(2.6)

TABLE I. Results of τ_{β} for different storage intervals.

887.6(1.1)

 $\tau_{n} = 887.6 \pm 3 \text{ s}$

2 corrections made:

1. gravitational correction ~+0.6%

2. filling correction ~+0.3%

MC simulation

MC simulation was performed at the following computing clusters: 1. PNPI ITAD cluster 2. PNPI PC Farm

Quasi-elastic scattering of UCN

S.K.Lamoreaux et al., Phys. Rev. C 66, 044309 (2002) S.K.Lamoreaux et al., nucl-ex/0612004v3

FIG. 13. The probability for UCN to upscatter or downscatter, per neV final energy, for three different UCN initial energies. These results are similar to those presented in [9,10].

$$P(E_{i} \rightarrow E_{f})\delta E_{f} = E_{i}(\alpha_{1}e^{-\beta_{1}|E_{i}-E_{f}|} + \alpha_{2}e^{-\beta_{2}\sqrt{|E_{i}-E_{f}|}})\delta E_{f}$$

$$\alpha_{1} = 10^{-8} \text{ cm}^{-1}, \ \beta_{1} = 0.065 \text{ cm}^{-1}, \ \alpha_{2} = 10^{-5} \text{ cm}^{-5}, \ \beta_{2} = 2 \text{ cm}^{-0.5} \text{ (T=283 K)}$$
5

Features of storage in different volumes

scaling:
$$\frac{t_2(i)}{t_2(j)} = \frac{t_1(i)}{t_1(j)} = \frac{\lambda(i)}{\lambda(j)} = \frac{t_2(i) - t_1(i)}{t_2(j) - t_1(j)}$$

losses are more in "long" volume
 cleaning is slower in "short" volume

Comparison with the experiment

Results of the simulations with different initial UCN spectrums in the trap

$\Delta \tau$ for the case without quasi-elastic scattering

9

Spectrum for the case without quasi-elastic scattering and without above barrier neutrons

Spectrum for the case without quasi-elastic scattering and with above barrier neutrons

$\Delta \tau$ for the case with quasi-elastic scattering

12

Spectrum for the case with quasi-elastic scattering and without above barrier neutrons

Spectrum for the case with quasi-elastic scattering and with above barrier neutrons

New corrections for experiment MAMBO I due to above barrier neutrons and quasi-elastic scattering

New corrections for experiment MAMBO I due to above barrier neutrons and quasi-elastic scattering

storage	τ _n , s	Δau_{n} , s	τ _n ′, s
interval, s			
112.5-225	891(10)	-56.68 (2.63)	834.32 (10.34)
225-450	888.5(4)	-14.58 (1.39)	873.92 (4.23)
450-900	889.2(2.5)	-7.84 (0.87)	881.36 (2.65)
900-1800	887.0(1.5)	-5.29 (0.70)	881.71 (1.65)
1800-3600	887.1(2.6)	-5.54 (0.87)	881.56 (2.74)
	887.6(1.1)		880.4(1.2)
			τ_n =880.4 ± 3.0 s

Correction of result by -7.2±1.6 s

Conclusion

The Monte Carlo simulation of the experiment MAMBO I shows that the result of this experiment can be corrected and instead of the previous result 887.6 \pm 3 s the new result 880.4 \pm 3 s could be claimed.