Status report PERKEO III

Dirk Dubbers U. Heidelberg

Neutron decay data are useful ...

... because many processes have the same Feynman diagram as neutron decay:

... precision data of weak interaction parameters today only from neutron decay

11.06.2009

St. Petersburg

Only few Standard Model parameters in n-decay ...

3 parameters needed:

- CKM matrix element $V_{\rm ud}$,
- ratio of coupling constants $\lambda = g_A/g_V$
- T-violating phase φ

... but many n-decay observables:

measured:	lifetime	τ
	e-v correl.	a
	β-asym.	A
	v-asym.	В
	p-asym.	\boldsymbol{C}
limits:	triple-correl.	D
		G
		R
in reach:	weak magn	f_2, g_2, b, \dots

problem is overdetermined: many tests of Standard Model

11.06.2009

β-spectra PERKEO II - 2006

H. Abele et al.

β-asymmetry *A*:

Beam related background

in-beam: 1 of 10^7 neutrons decay in spectrometer; uncompensated background $< 10^{-3}$

PERKEO II results

β-asymmetry:	A = -0.11933(34)	thesis Mund 2006
v-asymmetry:	B = +0.9821(40)	thesis Schumann 2007
proton-asymmetry	C = -0.2377(26)	thesis Schumann 2007
n-polarization	$P_{\rm n} = 0.997(1)$	thesis Kreuz 2005

PERKEO III team:

H. Abele, D. Dubbers, B. Märkisch, H. Mest, A. Petoukhov, T. Soldner, X. Wang

CKM Unitarity

2009:

New CKM element V_{us} , new neutron lifetime τ_n : New V_{us} reestablishes unitarity when using old τ_n , New τ_n reestablishes unitarity when using old V_{us} .

New Perkeo instrument

thesis B. Märkisch, 2006: Detector Coil Electrons **Decoupling Coils** Solenoid Coil Neutron Beam Decay Volume

PERKEO 2006: In the design phase

In the test phase

St. Petersburg

First run of New PERKEO 2007

count rate: 60 000 n-decays/sec.

Planned measurement: weak magnetism in n-decay $\sim \mu_n - \mu_p$ (~ 1% effect in β -asymmetry)

Next run: March 2009 to June 2009

2009: PERKEO III with pulsed n-beam

Current Beam Time

Changes to 2007 beamtime:

- velocity selector $\overline{\lambda} = 5A$, $\Delta \lambda / \lambda \approx 12\%$
- LiF chopper, frequency 100 Hz
- new plastic scintillator detectors
- improved background shielding
- revised/new data acquisition

```
mean event rate ~150 1/s
1% / day
```

polarization $P_n > 98\%$

Plastic Scintillator Detector

LiF Chopper

tof-spectra after close of n-chopper

11.06.2009

St. Petersburg

11.06.2009

St. Petersburg

PERC Project

A clean, bright, and versatile source of neutron decay products

NIM A, 596 (2008), 238-247 D. Dubbers, H. Abele, S. Baeßler, B. Märkisch, M. Schumann, T. Soldner and O. Zimmer