7th International Workshop "Ultra Cold & Cold Neutrons. Physics & Sources"

UCN Lab At FRM-II

current activities & plans

Igor Altarev

Physics Department E18 Munich Technical University Garching, Germany

Outline

- Overview
- Neutron EDM
 - Setting up the old EDM apparatus at PSI
 - Development of the new setup
- Neutron Life Time experiment
- UCN Source at FRM-II
 - Overview
 - Current status
- Summary & Outlook

Overview. Munich Research Reactor

East hall Main building Neutron guide hall

Overview. Experimental area

Overview. Main lines of activity

	Currently	Soon	Future
	2009	2010÷2015	after 2012
Neutron EDM ^{***}	Setting up experiment at PSI	Measurements & development of the new setup	Measurements with the new setup at FRM-II
Lifetime	Contracting apparatus	Setting up & measurements at PSI	Measurements at FRM-II
UCN Source at FRM-II	Prototyping & paper work	Building & running	Operating UCN source at FRM-II

*** in collaboration with a wide range of institutions

Neutron EDM. Setup at PSI

OILL: Old Sussex-RAL-ILL EDM apparatus has been recently moved to PSI

Munich group is mainly involved in setting up the magnetic conditions

Collaborating institutions:

http://nedm.web.psi.ch/

Neutron EDM. Setup at PSI

Most of components has been modernized or replaced with the new ones

The old magnetic shield and vacuum tank is still in use

Neutron EDM. External field compensation

Status: under construction. To be completed by October 2009

Neutron EDM. Degaussing

Remanent vertical magnetic field component at 30 cm distance around vertical axis of the UCN storage cell An example of insufficient degaussing of the original OIIL apparatus

A few second current impulse of - 8.5 mA improves considerably the field homogeneity

A new degaussing system is under construction. The current is increased to 1000 Aw. Additional loop added for most inner layer of the shield

Neutron EDM. Correction coils

OILL vacuum tank

The original set of 8 correction coils is improved. 24 coils are available now for fine tuning of magnetic field inside of the tank

Neutron EDM. New Magnetic Shield

R&D research is in progress for the new magnetic shield.

It will have:

dimensions about 3x3x6 meters

5 layers of µ-metal

radial shielding factor 50000

Neutron Life Time. PENeLOPE

In progress (in collaboration with PSI)

Precision goal

$\Delta \tau_{\rm n} \sim 0.1 \ {\rm s}$

- magnetic trapping: no systematic errors due to wall collisions
- no zero-field regions:
- spin-flip probability < 10^{-5} for 1500 s storage time
- removal of marginally trapped UCN, which introduce systematic errors
- good statistics: up to 10⁸ stored UCN with next generation UCN sources
- detection of decay protons
- online measurement of exponential decay curve
- additional counting of surviving neutrons: second, independent measuring principle
- intense study of systematic effects possible

error	value
Statistics (after 40 days)	0.03 s
neutron spin-flip	< 0.01 s
marginally trapped UCN	< 0.03 s
UCN scattering on rest gas	< 0.07s
time variation of UCN distribution	-
total (quadratic sum)	0.08 s

Experimental setup

- trap height: 1.1 m
- outer radius: ~ 0.5 m
- storage volume: ~700l
- 42 superconducting storage coils
- racetrack coils for zero-field suppression
- focusing coils for proton collimation

5 UCN buffer volume

- max. storage field: > 2 T
- min. storage field: >> 10⁻³ T

$E_{\rm UCN}$ < 110 neV

outer storage coils bottom storage coils central storage coils central storage coils racetrack coils

/ Talk by Stefan Materne

Int. Workshop on Part. Physics with Slow Neutrons, 2008, Grenoble

UCN source. Overview

UCN source. Overview

Mockup of SR6 at East hall for prototyping and tests

Start of mockup building in July 2009

UCN source. UCN converter

UCN source. Results from TRIGA Mainz

Para-H₂ is a possible candidate as a UCN converter

UCN source. UCN converter

Instrument: ANTARES@FRM-II

http://einrichtungen.physik.tu-muenchen.de/antares/

Neutron tomography image

UCN source. Cooling efficiency calculations

Cooling He velocity profile

Nuclear heating:	Project of 2000				
AI - 1.8 W/cm^3 D ₂ - 0.09 W/cm^3 H ₂ - 0.05 W/cm^3	AI - 2.2 W/cm ³ D ₂ - 0.11 W/cm ³				
Total cooling power 500 W @4.2K					

He mass flow	100 g/s
He pressure	3 bar
Pressure drop	0.09 bar
Temperature increase	0.2 K
Heat transfer coeff.	500 W/m²/K

Status: Two 500 W refrigerators will be purchased soonPlans: installation & test of the refrigerators in East hall by 2010

UCN source. Guide performance calculations

Transmission of 40m guide with open end, \emptyset = 125 mm

Replication technique

Loss probability $\mu \sim 2\eta$

$$\overline{\mu}(E) = 2\eta \left\{ \frac{V}{E} \sin^{-1} \left(\frac{E}{V} \right)^{\frac{1}{2}} - \left(\frac{V}{E} - 1 \right)^{\frac{1}{2}} \right\}$$

V = 250 neV f – diffuse reflection probability

<u>Talk by Klaus Schreckenbach :</u> Transmission measurements of UCN guides by UCN capture activation analysis of vanadium

UCN source. TOFTOF measurements at ILL

<u>Talk by Helmut Schober:</u> Time-of-Flight inelastic neutron scattering on D2, a key tool to understand the downconversion properties and loss channels of a D2-UCN source

Summary & Outlook

	Current	Soon	Future	
	2009	2010÷2015	after 2012	
EDM limit, e·cm	* 2.9·10 ⁻²⁶	5·10 ⁻²⁷	*** 5·10 ⁻²⁸	
Lifetime accuracy, s	^{**} ± 0.8	± 0.1	< ± 0.1	
UCN Source, ucn/cm ³	~10 (ILL)	~10 ³ (PSI)	up to 10 ⁴ (FRM-II)	
* Sussex-RAL-ILL ** PDG	*** with the new apparatus			

Progress mainly due to reduction of systematical errors

7th International Workshop "Ultra Cold & Cold Neutrons. Physics & Sources"

Thanks